M1.
(a) the distance travelled under the braking force
(b) the reaction time will increase
increasing the thinking distance (and so increasing stopping distance)
(increases stopping distance is insufficient)
(c) No, because although when the speed increases the thinking distance increases by the same factor the braking distance does not.
eg
increasing from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ increases thinking distance from 6 m to 12 m but the braking distance increases from 6 m to 24 m
(d) If the sled accelerates the value for the constant of friction will be wrong.
(e) only a (the horizontal) component of the force would be pulling the sled forward
the vertical component of the force (effectively) lifts the sled reducing the force of the surface on the sled
(f) $\quad-u^{2}=2 \times-7.2 \times 22$
award this mark even with 0^{2} and / or the negative sign missing

18
allow 18 with no working shown for 3 marks
allow 17.7(99) then incorrectly rounded to 17 for 2 marks

M2. (a) $4(\mathrm{~m} / \mathrm{s})$
1 mark for correct transformation of either equation 1 mark for correct substitution with or without transformation 1 mark for correct use of 0.6 N max score of $\mathbf{2}$ if answer is incorrect
(b) greater change in momentum
or greater mass of air (each second)
or increase in velocity of air accept speed for velocity
force upwards increased
lift force is increased do not accept upthrust
or force up greater than force down accept weight for force down
(c) - increase the time to stop

- decrease rate of change in momentum or same momentum change accept reduced deceleration/ acceleration
- reducing the force on the toy
do not accept answers in terms of the impact/ force being absorbed
do not accept answers in terms of energy transfer do not credit impact is reduced

M3. (a) idea that balanced by friction force* / pushing force equals friction force (*note "balanced" by unspecified force)
or
specification of relevant force but no reference to balancing in both 1 (a) and 1 (b) gains 1 mark overall for 1 mark
(b) balanced by upwards force of table* for 1 mark
(c) makes it (slightly) warm / hot
or
wears it away (slightly) / damages surface for 1 mark

M4. (a) (i) a single force that has the same effect as all the forces combined accept all the forces added / the sum of the forces / overall force
(ii) constant speed (in a straight line) do not accept stationary or constant velocity
(b) 3
allow 1 mark for correct substitution into transformed equation accept answer 0.003 gains 1 mark answer $=0.75$ gains 1 mark
$\mathrm{m} / \mathrm{s}^{2}$
(c) as speed increases air resistance increases
accept drag / friction for air resistance
reducing the resultant force

M5. (a) the forces are equal in size and act in opposite directions
(b) (i) forwards / to the right / in the direction of the 300 N force answers in either order
accelerating
(ii) constant velocity to the right
(iii) resultant force is zero
accept forces are equal / balanced
so boat continues in the same direction at the same speed
(iv) parallelogram or triangle is correctly drawn with resultant

M6.
(a) more streamlined
accept decrease surface area
air resistance is smaller (for same speed)
accept drag for air resistance friction is insufficient
so reaches a higher speed (before resultant force is 0) ignore reference to mass
(b) (i) 1.7
allow 1 mark for correct method, ie $\frac{5}{3}$
or allow 1 mark for an answer with more than 2 sig figs that rounds to 1.7 or allow 1 mark for an answer of 17
(ii) 7.5
allow 1 mark for correct use of graph, eg $\frac{1}{2} \times 5 \times 3$
(iii) air (resistance)
accept wind (resistance)
drag is insufficient
friction is insufficient

